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Conformal Invariance and the Critical Behavior 
of the Triplet X Y  Quantum Chain 
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We introduce and study the critical properties of the triplet X Y  quantum chain. 
This system is described in terms of three-spin interactions and is the generaliza- 
tion of the standard X Y  quantum chain. We show that this model, with periodic 
boundaries, has a local gauge invariance and can be described by the composi- 
tion of two triplet Ising models, with general toroidal boundary conditions. 
From this composition the phase diagram as well the conformal anomaly and 
critical exponents are determined by exploring their relations with the mass gap 
amplitudes predicted by conformal invariance. 

KEY WORDS:  Ising models; finite-size scaling; multispin interactions; con- 
formal invariance; X Y  model. 

1. I N T R O D U C T I O N  

Recently models with multispin interactions have received increasing atten- 
tion. These models exhibit a rich variety of critical behavior; the classical 
examples in two dimensions are the eight-vertex model (I) and the Ashkin- 
Teller model. (2) Both models can be formulated as Ising models with 
two- and four-spin interactions and have a critical line with continuously 
varying critical exponents. 

In a previous paper Alcaraz and Barber ~3) introduced the triplet Ising 
model and showed that its critical behavior has the same richness as the 
Ashkin-Teller model. This model is defined by mixed two- an d three-body 
interactions in the square lattice and is the anisotropic generalization of 
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the Ising model with three-spin interactions proposed by Debierre and 
Turban. (4) 

In this paper we study the anisotropic triplet X Y  quantum chain, 
defined in terms of three-spin interactions, which is the generalization of 
the standard X Y  quantum Hamiltonian, having only two-spin interactions. 
Instead of the U(1) symmetry present in the standard X Y  model, the triplet 
generalization exhibits a local gauge symmetry which permits us to derive 
important consequences. In the next section we define the model and we 
also show that it can be decomposed into two alternate triplet X Y  models 
each having one-half of the three-spin interactions. In Section 3 we verify 
that these alternate models have a Z(2) local gauge symmetry. Exploring 
this symmetry, we show in Section 4 that the last models are related to the 
triplet Ising model ~ with boundary conditions dependent on the gauge we 
choose for the alternate triplet models. Consequently, in order to study the 
triplet X Y  model, we have to analyze the anisotropic Ising model with 
several boundary conditions. The case of periodic boundary condition 
already has been analyzed (3) and in Section 5 we generalize these studies 
for several boundaries. The analysis was done by exploring the consequen- 
ces of the conformal invariance of the critical infinite system in the spectra 
of the Hamiltonian in a finite-size strip. Several scaling dimensions, which 
are related to the critical exponents, are calculated. Finally, Section 6 closes 
with our conclusions and a summary of our results. 

2, THE M O D E L  

The isotropic triplet X Y  quantum chain is defined on an L-site chain 
by the Hamiltonian 

L 1 
H 3){('1 , , ] ~ ) = -  ~ ,  (o-/xo-/x+lO-X+2-}-~o-Yo--LlO./Y+2) ( 2 . 1 )  

i = 0  

where ex and a r  are spin-l/2 Pauli matrices, 2 plays the role of the tem- 
perature, and periodic boundary conditions are assumed. This Hamiltonian 
is the three-spin generalization of the standard X Y  model, which only has 
two-body interactions, and is defined by the following Hamiltonian: 

L--1 
H~y)(2) ~ x x 2ayo_L 1 ) (2.2) = - -  (O'i O'i+ 1 + 

i = o  

The model defined by (2.1) is the isotropic version of the more general 
anisotropic triplet Hamiltonian 
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f L/3 -- 6 H ~ ) ( ~ , ~ ) =  ~ x x x ~ • . 
- -  (0{(73i00 3i + 1 2 G3i+ "~0~(73i+1003i+2~3i+3 

=o 
X X X X X X 

-~- 0{003i+ 2003i+ 3 0 0 3 i + 4 )  -~- O ~ 0 - L - - 3 0 0 L - - 2 0 - L - -  1 

+ ~ ( 7 ~ _  x x k" X % 
2 O-L-- 1 000 "~- O-L-- 1 000 O" 1 

"~-2 Y Y Y AV 0~00Y + 1 Y Y 
(0~0-3i0-3i + I (73i+ 2 0-3i+2003i+3 

"~ ~00Y+ 2 Y Y Y Y (73i+ 3 003Y/+ 4) "1- 0{00L_ 30"L - 2(7L-- 1 

r r r r [ ] ~  
-~ ~ 0 - Y  2 0 " L _  10"0 -~- O" L _  1 0"0 00 /; (2.3) 

where e is the constant of anisotropy and we have included explicitly the 
boundary terms. In (2.3) and hereafter we are assuming L as being a multi- 
ple of 6 in order to ensure the symmetries of the model. 

The spectra of the above Hamiltonian for low and high values of 2 are 
related by 

H(x3)y(~, 2 ) = 2H(~)r(c~, 1/2) (2.4) 

This property is derived by making, in (2.3), the SU(2) spin rotation 
{(Tx ~ 00v,, 0 - r ~  00x, 00z~ _00z; i =  1, 2,..., L). It is interesting to point out 
here that (2.4) is the analogous relation between the low and high tem- 
peratures of self-dual models like the Ising and Potts models. However, 
(2.4) is exact for all the eigenstates of (2.3) with L finite, and not only for 
part of them as usual for the self-dual models. 

The standard J(Y  model has a U(1) symmetry because the 
Hamiltonian (2.2) commutes with the z component of the total spin 
operator S z = Z  00z. The triplet model (2.3), on the other hand, can be 
expressed in terms of two other Hamiltonians, each one having separately 
half of the three-spin interactions and invariance under a local gauge sym- 
metry. In order to see this gauge, let us define the following new variables: 

a _ _  a a a . 
~ i  - -  ( ~ 2 i ( T 2 i  + 1 (72 i+  2 ,  

a a a a 
~ L / 2 - -  1 ~ 0 - L - - 2 ( ~ L  - 1(7"0 

a _  a a a . 
4 0 - 2 i +  5 ,  0 -2 i+  3 (72i + 

~ a  - -  a a a 
L / 2 - - 2  - -  0- L -- 10~ 

~ a  a a a 
L/2-- 1 ~--" 0"10020"3 

i = 0 ,  1,..., L / 2 - 2  

i= O, 1 ..... L/2 - 3 (2.5) 
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where a = X, Y. Is it clear from their definition that the variables r/ and 
commute, i.e., 

[r/x, i f ]  = [r/~, ~ f ]  = [r/x, i f ]  = [r/~, ~ f ]  = 0 (2.6a) 

[iX, i x ]  = [ i [ ,  i f ]  = [r/x, r/x] = [r/I, r/f] = 0 (2.6b) 

for all pairs (i,j)6 {1, 2 ..... L}, and 

[ i  x, ~ f ]  = [r/i v, t / f ]  = 0 (2.6c) i 

unless i = L  ]i-j] = 1, or (i, j ) =  (0, L/2-  1) or (L/2- 1, 0), in which cases 

{~X, i f }  = {r/X, r/f} = 0 (2.6d) 

In terms of these new variables the Hamiltonian (2.3) takes the simple form 

where 

L / 6 -  1 

i=0 
L / 6  1 

2 
i=0 

H(3) _/4(A)(.~ + H(x~(1) 
X Y  - -  ** XY ~, '1!  (2.7a) 

[-(~r/3i'~-r/3i+1 "~-~r/3i+2)-~- "~(xr/Y-+2)] (2.7b) 

[(0~f~/-~- ~ X3i+l "Jff (~fX'+ 2) ql_ 2 ( e i r  + r r3i+ 1 + ~I~+2)3 (2.7C) 

3. T H E  A L T E R N A T E D  T R I P L E T  X Y  M O D E L  

In the last section we showed that the triplet XY model can be 
described in terms of two decoupled Hamiltonians, H(x~(t/) and H(x~(i), 
subject to the constraints (2.8), each of these Hamiltonians having half of 

However, due to the periodic boundary condition, although the variables 
i and r/commute, they are not independent, because they should satisfy the 
constraints 

L / 6 - -  1 
a a i a  ~'a 

H r/3iq3i+2 3i~31+2 1; a=X, Y (2.8a) 
i=0 

L/6  -- 1 

a ~ ~a f~ = 1; a = X ,  Y (2.8b) H r/3ir/3i+ 1 ~3i 3i+ 1 
~=0 

From (2.6)-(2.8) the triplet model (2.3) can therefore be expressed in terms 
of two decoupled Hamiltonians satisfying the constraints (2.8). In the next 
section we study these decoupled Hamiltonians. 
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the triplet interactions of (2.3). These Hamiltonians are alternate triplet X Y  

models, because in terms of the original variables a x and ~r, they can be 
expressed as 

and 

L / 2 -  1 

E 
i = 0  

L / 2 -  1 

Z 
i = O  

X X 55 Y Y Y 
(0"2i0"2i + ~0"2i 0" 2i + 1 0"2i+ 2 ) (3.1a) 10"2i+  2 ~- 

( 0 " 2 i +  1 -t-- 3) (3.1b) 0"2i+ 20"2 i+  3 i 0 " 2 i +  20"2 i+  

with periodic boundary conditions imposed. Consequently, in order to 
study the triplet X Y  model, we need first to analyze the alternate triplet X Y  

models (3.1) and second couple them according to the constraints (2.8). 
Let us consider the alternate model (3.1a). This Hamiltonian has a 

Z(2) local gauge invariance. The local gauge operators, in terms of the 
variables cr x and ~r, are given by 

a a a a 
G i - a2i_i(~2i(72i+1; i = 1, 2 ..... L / 2 - -  1 

(3.2) a a a a ,  
G o = a L _ l a O a l ,  a = X ,  Y 

In Fig. 1 we illustrate the location of these gauge operators with respect to 
the interactions (wave lines). The commutation of these gauge operators 
with the Hamiltonian (3.1a) arises because, as we can see from Fig. 1, they 
have in common with the interactions an even number (0 or 2) of Pauli 
matrices. This gauge invariance implies that, by choosing the basis in which 
~r  is diagonal, we can separate the Hilbert space associated with (3.1a) in 
2 L/z block-disjoint sectors labeled by the eigenvalues (+1 o r - 1 )  of the 
Z(2) local operators G; (i=0, 1 ..... L / 2 - 1 ) .  In the next section we relate 
the alternate triplet model with the anisotropic triplet Ising model. (3) 

Fig. 1. 

, -  A ~ , , . . _ _ x r _ _ , ~ ,  / x  , 
/ 

O 
G L/2-1 
.A 

\ 

�9 a �9 

I 

' 

L/2 -1 

Location of interactions in the Hamiltonian (3.1a) (wavy lines) and the gauge 
operators (3.2). 
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4. THE  TRIPLET ISING M O D E L  

We show in this section that  the al ternate triplet X Y  models  (3.1) are 
related to the triplet Ising model,  (3) whose quan tum Hami l ton ian  is defined 
by 

/g3 - 6 
H(3) __ __ ~, Z z z +~GZ.+~ Z Z Z Z Z 

ISING --  (G3iG3i+ 1 G3i+ 2 G3i+ 2G3i+ 3 ~ ~0"3i + 20"3i + 3 G3i+ 4) 
i=0  

+ G f  3 z z 1Go + CaG _ z z GL--2GL--1 + O ~ C 1 G L - 2 L -  1G00-1 

L/3 -- 6 

- -  "~ a 3 i + l  -~ ~GX+ 2) (4 .1 )  
i=0  

where, as before, 2 plays the role of the t empera ture  and C1, C2, which 
m a y  assume the values + 1, - 1 ,  or  0, specify the bounda ry  conditions. In 
the periodic case C 1 = Ca = 1, while in the case of free bounda ry  condit ions 
C1 = Ca = 0. This Hami l ton ian  has a Z ( 2 ) |  Z(2)  nonlocal  symmet ry  due 
to the commuta t i on  with the Z(2)  opera tors  

L/3-1 
I1  x x /51 (4.2a) G3i0"3i+ 1 ~- 
i=0  

L/3-- 1 
I~  x x /32 (4.2b) G3iG3i+2 
i=0  

L/3 1 
H x x /31'/32 /33 (4.2c) 0"3i+ 1G3i+2 ~--- 
i=0  

Its Hi lber t  space can therefore be separa ted  into four disjoint sectors 
according to the eigenvalues ( _+ 1) of/31 and/32 .  The  finite-size studies of 
this model  reveal (3) that  the phase d iagram and critical exponents  of  (4.1) 
are similar to those of  the Ashkin-Tel ler  model. For  0 < e ~< 1 the line 2 = 
2~ = 1 is a critical line where the exponents  vary continuously,  while for 
c~ > 1 the model  shows two phase transit ions at 2 =2~1)(0~) and 2 = 2~2)(0~) 
with an intermediate  phase where the Z ( 2 ) |  symmet ry  is part ial ly 
brocken.  These two phase transit ions have the critical exponents  of the 
s tandard  (two-spin interact ions)  Ising model.  

In  order  to cont inue our  analysis, we introduce the new variables 

z z z . i = 0 , 1  ..... L - 3  (4.3a) ~/Y+ 1 ~ O'i Gi+  10"i+ 2 ~ 

Y ~ Z Z 
r l L _ l  C l f f L _ 2 f f L _ l  f fZ (4.3b) 

~or= z z z (4.3c) C 2 G L _  1G0 G 1 

r/x = ax'i, i = 0, 1,..., L -- 1 (4.3d) 
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which obey the same algebra (2.6) as the variables r/ defined in (2.5). In 
terms of these variables the Hamiltonian (4.1) takes the form 

L / 3  - -  1 

H (3) = _ 
ISING 

i = o  
E((Zr/3i "~- r /3 i+  1 "~- r /3 i+  1 

(4.4) 

and the parity operators (4.2) are given by 

r / 3  1 

H x x /~l (4.5a) r /3 i r /3 i+  1 = 
i = 0  

L / 3  - -  1 

. x r / x  =P2 (4.5b) H q3 i  3 i + 2  
i - 0  

In the case of toroidal boundary conditions (C1, C2~a0) the variables r/T 
( i=0 ,  1 ..... L - 1 )  are not independent, but should satisfy the constraints 

L / 3 -  1 

H Y r r /3 i+  l r / 3 i + 2  : C1  (4.6a) 
i--O 

L/3 1 
[ I  r r t ]3 i r /3 i+  2 = C 2 (4.6b) 
i = 0  

Equations (2.7b) and (4.4) show that the alternate triplet X Y  Hamiltonian 
(see Section 3) in a 2L-site chain and the triplet Ising Hamiltonian in an 
L-site chain are the same when expressed in terms of the variables r/. 
However, while these variables are independent in the first model, in the 
triplet Ising model they should satisfy the constraints (4.6). In order to see 
these relations more clearly, let us rename, in the alternated X Y  model 
(3.1), the original variables a x and a r. The variables a~i ( i=  0, 1,..., L / 2 -  1, 

a =  X,  Y), in the even sites, we rename v~', and the variables a~.+ 1 ( i=  0, 
1,..., L /2  - 1; a = J(, Y), in the odd sites, we rename #~': 

r/~=v~ 1#~v~+1; a = X , Y ;  i = 1 , 2 , . . . , L / 2 - 1  (4.7) 

The gauge operators (3.2) and the {r/r} variables (2.5) are now given by 

G T = # L l v [ # [ ;  i = 1 , 2  ..... L/2 - 1; G ~ =  #r/2 Y - ,  vorpor (4.8a) 

r / ~ = G V G  r # r  ~ # r # L  ' r . ~ r .~ r  v r r (4.8b) 
�9 r/O ~ I J0  IJ1 # L / 2 - -  2 # 0 # 1  i i + 1  i -  

and 

+'~y ~ y  Y ~ Y  
r/~/2- , = tr L/Z- ~ trO#L/2-  2 L/2 l # ~  (4.8c) 
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These equations show that if we choose the basis in which a r (or # r 
and v r) are diagonal, the gauge operators Gy are fixed (+1)  and the 
diagonal part of (2.7b) or (3.1a) will involve only the # f  operators. 
Because of this, the effect of the nondiagonal variables t/x is the same as the 
effect of #x, and we can write the triplet alternate X Y  Hamiltonian as 

L/6-  I 

( ~ # 3 i  "t'- # 3 i  + t ~- 2) 
i = 0  

I L/6~= 0 2 2 r .~v r v # r  
-- (G3 i+lL13 i+2#3 i#3 i+l  3 i + 2  

+ c~G~+ r r # r  r 
2G3i+3#3i+1 3 i + 2 # 3 i + 3  

+ a G ~ +  ~ ~ ~ 3 G3i+ 4#3i+ 2#3i+ 3/~3i+ 4) 
Y Y Y # Y  Y 

+GL/2-2GL/2-1#L/2 3 L/2 2#5/2-1 

r r r r r r r r r I (4.9) + o~G [/2 Go#IV2 2 # L / 2 - 1 # 0 + G o G I # L / 2  1#0#1 1 

It is interesting to observe that even after we fix the values of the gauge 
sectors the operators 

L/3 1 L/3-  1 
PI = U x x = 17 # x # x  (4.10a) ~ 3i/'13i + 1 1 1  3i 3 i+1  

i - -0  i = 0  

L/3-  1 L/3 1 
P2 1~ x x # x # x  (4.10b) ~ 3iI']3i + 2 = 1 ~  3i 3 i+1  

i--O i = 0  

still commute with the Hamiltonian (4.9). These operators are the same 
parity operators introduced above in (4.5) for the triplet Ising model. The 
constraint equations (4.6) for the triplet Ising model correspond in the 
alternated triplet model to the conditions 

L/3 -- 1 L/3 1 

l - I  Y Y - ( 4 . 1 1 a )  ~ 3 i +  1 ~ 3 i + 2 - -  U Y Y G3iG3i+ 1 
i = 0  i = 0  

L/3 -- 1 L/3 -- 1 
H y Y Y Y 

/'13iq3i + 1 = I ~  (4.11b) G3iG3i+ l 
i = 0  i = 0  

These results show that the 2 z/2 sectors of the triplet model charac- 
terized by the gauge values {Gy) will be separated into four distinct groups 
of 25/2/4 sectors characterized by the product (4.11) of the gauges. From 
(2.7), (4.4), and (4.6) the sectors in each of these groups are degenerate and 
equivalent to the triplet Ising model with toroidal boundary conditions C1 
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and C2 given by the values of the products of the gauges (4.11). As in the 
triplet Ising model, each of these distinct sectors is still block separated into 
four other disjoint sectors labeled by the eigenvalues of the parity operators 
/~1 and/~2 given in (4.10). Consequently, in order to study the eigenspectra 
of the alternate triplet X Y  chain with periodic boundaries and 2L sites we 
should study equivalently the triplet Ising Hamiltonian (4.1) with L sites 
and general toroidal boundary conditions, which will be done in the next 
section. 

Before closing this section, let us discuss some equivalences of sectors 
for the triplet Ising Hamiltonian. The canonical transformations ~/x__+ ~//r 
and r/r--+~ff ( i=0 ,1  ..... L - l )  give us a relation analogous to (2.4). 
However, Eqs.(4.5) and (4.6), which characterizes the sectors and 
boundary conditions, are changed. At the special point ()~ = 1) we have 

HCllC~ = HP12f~]92 (4.12) 

which says that the sector where the parity operators (4.2a)-(4.2b) have 
the eigenvalues P~ and P2 ( !  1) of the triplet Ising Hamiltonian with 
boundary conditions C1 and C2 ( _  1) has the same eigenspectrum as the 
sector where the parity operators have the eigenvalues C2 and C1 C2 and 
the boundary conditions are P 1 P 2  and P2. Another interesting relation 
among sectors can be obtained by making a reflection in the lattice: 
i-+ ( L - 1 ) -  i ( i= 0, 1 ..... L -  1 ). With this transformation we obtain 

HCel:ce~ = H~>c2~e2 (4.13) 

where the notation is the same as in (4.12). For completeness, in the case 
of free boundaries, the triplet Ising model has the property 

H (F) - H (r) (4.14) 
p I , p  2 - -  P i P 2 , p  2 

which states that the sectors with parities P1 and P2 are equivalent to those 
with parities P1P2 and P2- 

5. C O N F O R M A L  I N V A R I A N C E  A N D  M A S S  GAP A M P L I T U D E S  

The assumption that most of statistical mechanics systems at criticality 
are conformally invariant ~5 7) produced remarkable results in two dimen- 
sions. Specifically, Cardy ~8'9) has derived a set of important relations 
between the finite-size corrections of the transfer matrix in a strip of finite 
width and the conformal anomaly and scaling dimensions of the operators 
describing the critical behavior of the infinite system. 

The pertinent restilts for our purposes, when transcribed to the 
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quantum Hamiltonian formalism, ~176 are as follows. Corresponding to each 
primary operator ~b~,j in the conformal algebra of the infinite system with 
dimension Xo = A + zl and spin S~ = zl - A, there exists at the critical point 
(2 = 2c) a set of eigenstates of the L-site quantum Hamiltonian chain with 
toroidal boundary conditions with eigenenergies E~,~ and momenta P,~,~ 
given by 

2re ~ ) 
En,~= Eo + ~- f f  (X~ + n + ~) + o(L - 

2re 
P , , ~ = - - ~ ( S + + n - f i ) ;  n, f i=0 ,  1,2 .... 

(5.1) 

where E o is the ground-state energy for the finite chain with periodic 
boundaries and ~ is a model-dependent constant, reflecting the fact that the 
singular behavior of the Hamiltonian is insensitive to multiplication by an 
arbitrary constant. Also, as a consequence of the conformal invariance of 
the infinite system the finite-size corrections of the ground-state energy is 
proportional to the conformal anomaly, or central charge of the conformal 
theory governing the criticality of the statistical model. For  periodic 
boundaries the ground-state energy Eo(L) at the critical point behaves 
assymptotically like 

Eo/L = e~ - ~nc/6L 2 + o(L 2) (5.2) 

where eo~ is the energy per site in the bulk limit. 
In the following we use the relations (5.1) and (5.2) to obtain the 

scaling dimensions for the triplet Ising model, the alternate triplet X Y  
model, and the triplet X Y  model. Because the eigenspectra of the last two 
models are related with that of the triplet Ising model, this model will be 
considered initially. 

5.1. The  Tr ip le t  Ising M o d e l  

From the finite-size calculations (3) for the triplet Ising model with 
periodic boundaries, we know that this model exhibits two types of critical 
behavior. For  0 < 7 ~< 1 the model has a critical line at )~ = 2c = 1 governed 
by a c = l  conformal theory, having continuously varying critical 
exponents. For  ~ >  1 the model undergoes two phase transitions, at 
2 = 2~1)(~) and 2 = 2~2~(~), with the critical exponents of the standard Ising 
model (c = 1/2). As we saw in the last section, in order to study the triplet 
X Y  model we need to calculate the dimensions arising in the triplet Ising 
chain with general boundary conditions imposed. 
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For the purpose of using (5.1) we have to introduce, for general 
toroidal boundary conditions, eigenstates with momentum quantum num- 
bers. If we choose in (4.1) the ax basis, the basis vectors with momenta 
P =  p + A  (p =0,  1,..., L / 3 -  1) in units of 2~/(L/3) are given by 

1 
Ip, {x} ) (L/3)1/2 {ISo, oSo, lSO, 2; S1,051,151,2;'"; SL/3 I,oSL/3 - 1,1SL/3 - 1,2) 

~- ei[2rcYl/(L/3)] ISI,oSI, IS1,2;"'; SL/3-- 1,oSL/3 1,1SL/3 1,2; 

X So, oSo, 1So,2) -}- "'" 

+ ei[2rrYL/3-1/(L/3)] [SL/3- 1,oSL/3- 1,1SL/3- 1,2; So, oSo, 1So,2 ;'"; 

X SLI 3 2,0SLI 3 2,1SLI 3 2,2)} (5.3) 

where sn,k is the eigenvalue (__+ 1) of the operator a x in the site i =  3n + k 
( i=0 ,  1, 2 ..... L -  1) and the constants Yi ( i=  1, 2 ..... L / 3 -  1) are given by 

Y i =  ~ 2 0 S k ' o ~ - T k E O  k=O Sk, 2 - ( A - p ) i  (5.4) 

The constants Qi, i = 0 ,  1, 2, and A will depend upon the particular 
boundary condition and sector, and in Table I we show their values for the 
possible toroidal boundary conditions. 

From relations (5.1) the several anomalous dimensions of the 
operators can be obtained by extrapolating the sequences 

GC~C~2(L, c, c2 p)_E2f+(L,'O) 2X(l 1 p)=En.e~p2(L, =--L--X+o(L- ) (5.5) 

where we denote by EC~C~2(L , p) the nth eigenenergy (n=  1, 2,...) with 
momentum P =  [2zc/(L/3)](p+A), ( p = 0 ,  1 ..... L / 3 - 1 )  (see Table I) of 
the sector with parities P1 and P2 ( + ) of the Hamiltonian with boundary 
conditions CA and C2 (+ ) .  In (5.5) the ground state for a periodic 
boundary is E ~ +  (L, 0) and X is the corresponding scaling dimension. In 

Table I. Value of Constants in (5.4) for Several Boundary Conditions 

c~ c~ Oo O~ O~ A(P,/ 

+ 1  + 1  o o o o 

- 1 + 1 1 1 0 (1 - P1 ) /4  

- 1 - -  1 1 0 1 (1 - -  P 2 ) / 4  

+ 1 - -  1 0 1 1 (1 - P 3 ) / 4  
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order to extract the anomalous dimensions from (5.5), we need to calculate 
the constant ~i- This can be done [see (5.1)] by extrapolating the 
difference between higher energy states associated with the same primary 
operator(ll); for example, we can use the sequence 

27r l) 
ZL ~E++l, +(L, 1)-E~_++(L,O)=---~I§ (5.6) 

which is the mass gap amplitude between the two lowest states in the sector 
P1 = +1, P2 = - 1  for the Hamiltonian with periodic boundary condition 
C 1 ~-- C 2 = -4 -1 .  

The case of periodic boundaries was already studied. {3) From the 
sequences Gs 0), Gs 0), and G ++I__(L, 0) the dimensions X~, 
Xo, and X~ were conjectured 

X~-  2 cos 1(_~)  (5.7a) 

1 XD X~ 0<e~< 1 (5.7b) 
X ~  8 '  4 ' 

while for e > 1 we have two phase transitions of Ising type where X~ = 1 
and X o = 1/8 or X:z = 1/8 in each of the phase transitions. The dimension 
X, = 2 -  1Iv is associated to the energy operator, where v is the correlation- 
length exponent, while the dimensions X o and X~ govern the spin-spin 
correlations in different sublattices33~ The fact that for 0 < c ~ < l  the 
exponents depend continuously on the anisotropy induces us to expect, in 
terms of standard renormalization group arguments, (12) the existence of a 
marginal operator (Xmar = 2) governing the motion along the fixed line. In 
fact, in Table II we show, for some values of ~, the sequence 

Table II. Finite-Size Sequences G+++( L,a.+ O)/ZL for  L =6-18 and 
Some Values of a a 

L ~=0.1 c~ =0.4 c~ = 0.6 ~ =  1.0 

6 2.822095 2.668088 2.408439 3.092158 
9 2.306231 2.237341 2.111631 2.886157 

12 2.162053 2.111954 2.027738 2.594960 
15 2.100935 2.065327 2.002612 2.551423 
18 2.069084 2.042669 1.993185 2.523459 

Estimate 2.00 1.96 1.99 2.4 
Conjecture 2 2 2 2 

a The conjectured value is Xma r = 2. 
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G ++ tL O)/ZL, indicating the presence of such a marginal operator. All 3 , + + \  
the eigenspectra calculations reported in this paper were done by using 
Lanczo's method and the extrapolations by using the van den Broeck 
Schwartz approximants ~13''4) (for a recent review of these methods see 
ref. 15). The slow convergence in this table f o r ,  around unity is expected/3) 
because at ~ = 1 the operator responsible for the corrections to scaling, 
usually irrelevant, becomes marginal, giving rise to logarithmic correc- 
tionsJ '6) 

The mass gap amplitudes, in the case of nonperiodic, but toroidal 
boundary conditions will be related to the parafermions. ~7) From the 
relations (4.13) and (4.14) we have only studied the dimensions associated 
with the low-lying states of sectors and boundary conditions that are not 
related to the periodic case. The most interesting of these sequences are 

G~_ + (L, 1 ) /Zc ~ X ~ f  ' (5.8a) 

G -  + (L, O)/Zc ~ x s ?  ,/2 (5.8b) 1,-- + 

G~, +_ (L, 0)Z L --* .~s r ,/2 (5.8c) 

In Tables III-V we show their finite values together with the extrapolated 
and conjectured results. The lowest energy in the sector P,  = - 1  and 
P2=  +1, with boundary condition C, = C2= -1 ,  is a state with momen- 
tum P=2rr/(L/3) ,  which corresponds, in (5.4), to p =  1 and A = 0  (see 
Table I). The mass gap amplitude associated with this state, according to 
(5.1), is related to a spin-1 operator. The extrapolation in Table III 
indicates the conjecture 

XpSf 1 = 1, 0 < C~ ~< 1 (5.9a) 

Table I I I .  F i n i t e - S i z e  S e q u e n c e s  G~-+(L, 1)/Z, f o r  L = 6 - 1 8  and 
Some Values of a n 

L ~=0 .1  c~ =0.4 c~ = 0.6 c~ = 1.0 

6 1.362190 1.208766 1.131648 1.067865 
9 1.150097 1.102541 1.067132 1.040306 

12 1.079906 1.054037 1.034169 1.024972 
15 1.049868 1.033081 1.019664 1.017238 

18 1.034163 1.022230 1.012180 1.012831 
Estimate 0.985 1.001 1.000 1.001 

Conjecture 1 1 1 1 

The conjectured value is XSr - 1 & 1. 
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F in i te -S ize  Sequences  G~_++(L, O)/Z L for  L = 6 - 1 8  and 
Some Values  of  o a 

L a =0.1 ~ =0.4  a =0.6 :~ =0.8 

6 0.910617 0.867922 0.825400 0.784921 
9 0.730000 0.705514 0.680071 0.654032 

12 0.680576 0.664966 0.647076 0.626552 
15 0.659607 0.648688 0.634718 0.616851 
18 0.648682 0.640522 0.628929 0.612642 

Estimate 0.627 0.625 0.624 0.610 
Co~ecture  0.625 0.625 0.625 0.625 

a The conjectured value is XS~ m =  5/8. 

On the other hand, the lowest-energy states in the sector P1 = + l ,  P2  = --1 
(P1 = P 2  = - 1 )  with boundary condition specified by C 1 = - 1 ,  C2 = +1 
are states with momenta P =  �89 because p = 0  and A = 1/2 (see 
Table I). Consequently, from (5.1), they should correspond to spin S =  1/2 
parafermion operators. The extrapolated results of Tables IV and V 
indicate the conjecture 

x S r  1/2 - 5 -  0.625, 0 < ~ < 1  (5.9b) 
8 

and 

1 
~ S f  1/2 ---- XD "~-Ez16X--' 0 < a ~< 1 (5.9c) 

where X D is given by (5.7c). 

T a b l e V .  F in i te -S ize  Sequences  G~+ (L,O) /Z L for  L = 6 -18  and 
S o m e  Values  of  o a 

L a=O.1 a = 0 . 4  ~=0 .6  ~ = 0 . 8  

6 0.706453 0.704648 0.710382 0.726505 
9 0.577100 0.579256 0.587834 0.605234 

12 0.541377 0.547631 0.559111 0.578593 
15 0.526172 0.534820 0.547880 0.568466 
18 0.518237 0.528334 0.542333 0.563578 

Estimate 0.502 0.515 0.532 0.555 
Conjecture 0.500 0.513 0.529 0.554 

a The conjectured value is XS~X/2=X D + 1/(16X=), where Xt~ = ~z/[8 c o s - l ( - a ) ] .  
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The dimensions x S f  I and xS~ 1/2 have the same value as the dimen- 
sions of the parafermions of spin 1 and 1/2 in the Ashkin-Teller model./ix/ 
It is also known t17) that beyond the spin-1 and spin-l/2 parafermionic 
operators, with dimension given by (5.9a), (5.9b) the Ashkin-Teller model 
also exhibits parafermions with spins S = 1/4 and S = 3/4. If the similarities 
between the triplet Ising model and the Ashkin-Teller model were 
complete, we should find the corresponding dimensions/17) xs~x/4= 
X~ /4  + 1/16X D and X S j  3/4 = 9XG/4 + 1/16X~. However, these dimen- 
sions do not occur, and we can understand this fact from the momentum 
states in the triplet Ising model with general toroidal boundary conditions. 
From (5.1), in order to obtain parafermions of spin 1/4 or 3/4 we should 
have states with momentum 

27z 27c 1 
P= (p + A ) L/3 L/34  

o r  

2zc 3 

L/3 4 

which is not possible because, as we can see in Table I, A is integer or 
half-integer. 

For completeness we have also studied the triplet Ising model with free 
ends. In this case the mass gap amplitudes are related to the surface 
exponents X s. To each surface exponent of the infinite system (7'1s) there 
corresponds a set of states in the free boundary Hamiltonian on L sites 
with energies at the bulk critical point given by 

(F) (F) ~I(X-S r)/L o(L -1 0, 1, 2,... (5.10) E r ( L ) = E  o ( L ) +  + + ); r =  

Here E(oF)(L) is the ground-state energy of the finite chain and ~i is the 
same constant appearing in (5.1) and (5.2), which can be estimated by 
extrapolating the sequence 

WL = E ~F) -- E (F) = rc[~/L + o( L -1) (5.11) i , - +  0 , - +  

where E{/~)o,++ ~,~1.+ +{F(F) ) is the ground-state energy (first excited state) in the 
sector PI = P 2 =  +1 of the Hamiltonian with free ends. The surface 
exponents corresponding to the low-lying states in each sector can be 
obtained from the extrapolated value of the following sequences 

S ~  (F) - E  (F) ~ ~ X~S)+o(L -1) (5.12a) 
- -  1 , + +  0 , + +  ~ L  i e 
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1 _E(F) _E(F) rc ~Ix(SI+o(L_I)  SL-- o,-- o,++= Z (5.12b) 

SL =2 E(F)o,_+ --E(F)o,++ =ZZt ~IX(~)+o(L 1) (5.12c) 

where ~-(F) is the nth excited state in the sector P1 P 2  of the ~ n ,  PI P2 
Hamittonian with free boundary condition. In Table VI we present, for 
some values of e, the estimates obtained from the extrapolation of the 
sequences S~ 1 SIJWL, and S~/WL, using lattices sizes L--6-15.  These 
results indicate the conjecture 

X~ s) = 2 (5.13a) 

Y(U] S) = C o s - l (  - -  ~)/7~ = 1/(2X~) (5.13b) 

x ~  = 1 (5.13c) 

for 0 < c~ ~< 1. The value X~ s) = 2 is expected for all (1 + 1)-dimensional 
critical models ~7) and the exponents X~ s) and X ~  ) have exactly the same 
value as the surface exponents which correspond to the magnetization and 
polarization correlations in the Ashkin-Teller modelJ 19'2~ The equivalence 
between the two models with respect to the surface exponents seems to be 
complete. 

5.2. The Alternate Triplet XY Model 

From the results of Section 4, the Hilbert space associated with the 
alternated XY model with L sites and periodic boundaries is block 

TableVI. Finite-Size Estimates o fS~  S2/W L, and S ~ / W  L f o r L = 6 - 1 5  
and Some Values of  o" 

x~ ~' x~) x~ 

Estimate Conjecture Estimate Conjecture Estimate Conjecture 

0.1 1.999 2 0.525 0.53188... 0.999 1 
0.2 1.998 2 0.564 0.56409... 1.002 1 
0.4 1.998 2 0.625 0.63098... 1.003 1 
0.5 2.002 2 0.665 0.66666... 1.001 1 
0.6 2.002 2 0.699 0.70483... 0.998 1 
0.8 2.006 2 0.772 0.79516... 0.95 1 

a The conjectured values are given by (5.13). 
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separated in 2 El2 sectors of dimension 2 L/2 labeled by the gauge choice 

{Go GL/2_ 1}. These sectors are divided in four groups of 2L/2/4 
degenerate sectors, each of these groups having a different value for the 
product of the gauge variables in even and odd sites of the lattice [see 
(4.11)]. From (4.10) and (4.11) these distinct sets of sectors have the same 
spectra as the triplet Ising model with L/2 sites and different toroidal 
boundary conditions. Consequently, the phase diagrams of both models are 
the same in the plane 2, c~. 

From the above equivalences, Eqs. (5.1) and (5.11), we conclude that 
the criticality of the alternate triplet X Y  model is governed by the same 
conformal theory as the triplet Ising model. The operator content of the 
alternate triplet X Y  model with periodic boundaries is the sum of the 
operator contents of the triplet Ising chain with arbitrary toroidal 
boundary conditions. In particular, all the dimensions obtained in (5.7), 
(5.9), and (5.11) are also present in the alternate triplet J(Y model. 

5.3. The Triplet X Y  Model 

From the results of Section 2, the triplet X Y  model can be written as 
the direct sum of two alternate triplet X Y  models subject to the constraints 
(2.8). These constraints, from (4.10) and (4.11), imply that in order to 
obtain the spectrum of the triplet X Y  model, we should combine identical 
sectors of the two alternate models. Equivalently, we should combine the 
spectra of two triplet Ising chains with L/2 sites having the same boundary 
conditions C~, C2 and parities P~, P2. Using the notation of Eq. (5.5), we 
find that the ground-state energy is 2E + + (L/2, 0) and the constant ~xy 1,--+ 
appearing in (5.1) can be estimated from the sequence 

Z L/2 = [E~_++ ( L/2, 1 ) + E 2 ++ ( L/2, 0)3 - 2E~. ++ ( L/2, O) 

27c =Z-~y+ o(L ~) (5.14) 

which gives us, from (5.6), ~x r=  2~. This fact together with (5.1) implies 
that the conformal anomaly of the triplet X Y  model is double that of the 
triplet Ising model. Thus, the triplet X Y  model has for 0 < c~ <~ 1 a line of 
continuously varying critical exponents (2 = 2c = 1) governed by a c = 2 
conformal theory and for ~ > 1 it has two phase transitions governed by a 
c = 1 conformal theory. 

The scaling dimensions of the triplet X Y  model due to the restrictions 
(2.8) are double those of the triplet Ising model, except for the dimensions 

822/60/5-6-9 
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associated with the conformal towers belonging to the sector containing the 
ground state. In this last case, which includes the identity (X=0) ,  the 
energy (X= X~), and the marginal operator (Xma~ = 2), the dimensions in 
both models are the same. 

6. CONCLUSION AND S U M M A R Y  

In this paper we have introduced and studied the triplet X Y  quantum 
Hamiltonian (2.1). By making a change of variables, we have shown that 
this Hamiltonian is related to two alternate triplet J(Y Hamiltonians (3.1), 
each having half of the interactions and satisfying the constraints (2.8a). 
These alternate models have a Z(2) local gauge symmetry and in Section 4 
we showed that they are exactly related to the triplet Ising model (3) (4.1) 
with several boundary conditions imposed. For each choice of the gauge in 
the first model there corresponds a certain boundary condition in the 
second. 

These facts induced us to extend (Section 5) for general boundaries the 
finite-size studies of the triplet Ising model already done in the periodic 
case. ~ Exploring the consequences of the conformal invariance of the 
infinite system in the finite-lattice spectrum, we calculated several scaling 
dimensions. Our results reveal that although in the periodic case this model 
shows the same anomalous dimensions (3) as the Ashkin-Teller model, both 
models behave differently under other boundary conditions. The para- 
fermions of spin S = 1/4 and spin S = 3/4 which are present in the Ashkin- 
Teller model (17"21) do not occur in the triplet Ising chain with toroidal 
boundary conditions. For completeness, we also studied the triplet Ising 
Hamiltonian with free ends and we calculated the surface critical 
exponents. 

The spectrum of the triplet X Y  model was obtained by combining 
identical sectors (same parities) of two triplet Ising models with the same 
boundary condition. From this combination we conclude that for 0 < c~ ~< 1 
the triplet X Y  model also has a critical line (2 = 2c = 1) with continuously 
varying critical exponents, its critical fluctuations being described by a 
conformal theory with central charge c = 2. For e > 1 the model undergoes 
two phase transitions with fixed exponents and is governed by a c = 1 
conformal theory. 

The results of Section 5 also show that the anomalous dimensions 
associated with eigenstates belonging to the ground-state sector are the 
same as the corresponding ones in the triplet Ising model. This is the case 
of the dimensions associated with the energy operator and the marginal 
operator appearing in the region where 0 < ~ ~< 1. All the other dimensions 
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which  occur  in  the t r iple t  I s ing  m o d e l  wi th  genera l  t o ro ida l  b o u n d a r y  

c o n d i t i o n s  a p p e a r  d o u b l e d  in  the t r ip le t  X Y  m o d e l  wi th  igeriodic b o u n d a r y  

cond i t i on .  

A C K N O W L E D G M E N T S  

This  w o r k  was s u p p o r t e d  in  pa r t  by the C o n s e l h o  N a c i o n a l  de Desen-  

v o l v i m e n t o  Cient i f ico e T e c n o l 6 g i c o - C N P q  a n d  the F u n d a q ~ o  de a m p a r o  

~i Pesqu i sa  do  E s t a d o  de Silo P a u l o - F A P E S P  (Brazil) .  

R E F E R E N C E S  

1. R. J. Baxter, Ann. Phys. (N.Y.) 70:193-228 (1972). 
2. J. Ashkin and E. Teller, Phys. Rev. 64:178-184 (1943). 
3. F. C. Alcaraz and M. N. Barber, J. Stat. Phys. 46:435-453 (1987). 
4. J. M. Debierre and L. Turban, J, Phys. A: Math. Gen. 16:3571-3584 (1983). 
5. A. M. Polyakov, Soy. Phys. JETP Lett. 12:381 (1970). 
6. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, J. Stat. Phys. 34:763 (1984); 

Nucl. Phys. B 241:333 (1984). 
7. J. L. Cardy, in Phase Transitions and Critical Phenomena, VoL I 1, C. Domb and 

J. L. Lebowitz, eds. (Academic Press, New York, 1987). 
8. J. L. Cardy, J. Phys. A: Math. Gen. 17:L385-357 (1984). 
9. J. L. Cardy, Nuel. Phys. B 270[FS16]:186 (1986). 

10. M. N. Barber, Phys. Rep. 59:375-409 (1980). 
11, G. v. Gehlen, V. Rittenberg, and H. J. Ruegg, J. Phys. A: Math. Gen. 19:107-119 (1986). 
12. L. Kadanoff and A. C. Brown, Ann. Phys. (N.Y.) 121:318 (1979). 
13, J. M. van den Broeck and L. W. Schwartz, SIAM J. Math. Anal, 10:658 (1979). 
14. C. J. Hamer and M. N. Barber, J. Phys. A." Math. Gen. 14:2009-2025 (1981). 
15. M. Henkel, in Finite-Size Scaling and Numerical Simulations of  Statistical Systems, 

V. Privman, eel. (World Scientific, Singapore, in press). 
16. J. L, Cardy, J. Phys. A: Math. Gen. 19:L1093 (1986). 
17. F. C. Alcaraz, M. N. Barber, and M. T. Batchelor, Ann. Phys. (N.Y.) 182:28C~343 (1988). 
18. K. Binder, in Phase Transitions and Critical Phenomena, Vol. 8, C. Domb and J.L. 

Lebowitz, eds. (Academic Press, New York, 1983). 
19. G. v. Gehlen and V. Rittenberg, J. Phys. A." Math. Gen. 19:L1039 (1986). 
20. F. C. Alcaraz, M. N. Barber, M. T. Batchelor, R. J. Baxter, and G. R. W. Quispel, J. Phys, 

A. Math. Gen. 20:6397-6409 (1987). 
21. M. Baake, G. v. Gehlen, and V. Rittenberg, 3. Phys. A: Math. Gen. 20:L479, L487 (1987). 


